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Abstract: &Iydroxy (Z)enol ethers 6 and 12 were readily pqared from D-glumno-15laotone by ring opening, 2- 
0-alkylation with hiflate 3. and Z-specitic elimination. Cychzation of 6 and 12 induced by PhSeBFqor by PhSeOTf 
provided exclusively P-connected disaccharides, which were converted into nemaminic acid analogues 10 and 11 or 3- 
deoxy-2-glycosyl-D-2-hexulofumnosylonate 13. respectively. 

N-Acetylneuraminic acid (NeuSAc, 1, Scheme 1) occupies the nonreducing ends of the oligosaccharide 

chains in many glycoconjugates, which are constituents of the outer layer of plasma membranes; NeuSAc is of 

considerable importance for a great number of biological functions.2 Analogues and their glycosides are re- 

quired for understanding the interactions with the enzymes involved in its metabolism (especially sialyltrans- 

ferases and sialidases)? 

Scheme 1 
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In this context we recently reported” a highly steteoselective disaccharide synthesis of a-glycosidically linked 

NeuSAc-analogues of type A, lacking the D-erythro-trihydroxypropyl-side chain; this method is based on a 

cyclization of e-hydroxy (@-en01 ether intermediate E (route I)4b, initiated by N-iodosuccinimide. 

In this paper we describe the cyclization of the alternative (Z)-enol ether D (route II) which depending on 

the substituent X at C-5 results in the formation of g-glycosidic NeuSAc-anslogues B or in newly prepared 8- 

glycosides C of 3-deoxy-D-erythro-2-hexulosonic acid 00x;. 2); 2 is an important metabolite of bacterial po- 

lysaccharide degradation.5 

The starting material of type F (Scheme 2; 5, gluco-series) could be easily obtained from D-glucono- I ,5- 

lactone via tegioselective di-0-isopmpylidenation with simultaneous methyl ester formation (-t 4)6 and then 

alkylation of the OH-group at C-2 with freshly prepared methyl 2,3,4-ui-O-benzyl-6-O-trifluoromethan- 

sulfonyl-a-D-glucopyranoside 37. Acid catalyzed selective 5’,6’-de-0-isopropylidenation, selective 6’-O-silyla- 

tion with t-butyldiphenylsilyl chloride (TBDPS-Cl)*, and azido group introduction at the C-5’ atom afforded the 

intermediate desired for p-elimination. Thus, treatment of this base sensitive molecule with t-BuOK at -78oC 

led to abstraction of the acidic proton at C-2’ and concomitant 3’-O-elimination providing the (Z)-enol ether 6 

in quantitative yield. 

Epimerization of the OH-group at C-2 in 4 to the manno-derivative 7 (Scheme 2, manno-series) and 

applying the same reagents and reaction conditions as described above resulted also in (Z)-enol ether 6, thus 

evidencing the ElcB mechanism of this C-2/C-3 p-elimination. 

Compound 6 possesses the desired (Z)-configuration9 requited for the ensuing highly regio- and /&stereo- 

selective cyclization which could be induced at low temperatme by the new reagent PhSeBF4 or also by 

PhSeOTPO as highly electrophilic promotors in a quantitative reaction. The %$ conformation of the p-gly- 

cosides, obtained via G as intermediate, was derived from the tH-NMR data of 9 (JYA’ = J e-7 = 10.1 Hz; rrans- 

diaxial relationships between H-3’, H-4, H-S). The introduction of the bulky pivaloyl group (route to 11) indi- 

cated, that the stereochemical course of the reaction depends mainly on two factors: i) the conformation of the 

two possible intermediates G and H after the addition of the PhSe+-species favoring the chair-like form G, and 

ii) the cooperative anomeric effect in the nascent (Z)-enol ether product. Reduction of the azido and the phenyl- 

selenyl groups with BuaSnH in the presence of catalytic amounts of AJBN (toluene, 90 Oc, 30 min) and ace- 

tylation gave compounds 10 and 11, respectively. On the other hand, O-unprotected (Z)-enol ether 12 gave 

after the same procedure the 3-deoxy-D-etythro-2-hexulofuranosylonate 13 in high yield. The observed 

regiochemistry accords with the kinetically preferred formation of five-membered rings in carbohydrate ring 

closure reactions. The compounds were characterized by their tH-NMR datatt. 
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Selected physiscal data for compounds 6 and 9-13. [Values of [a]o and 8” (only the signals of the he 

xulosonate part of the molecules) were measusred for solutions in CHC13 and CDCl,] : 6 [a] D** + 4 1.8 

(c 1); 6E = 3.69-8.77 (m, 6 H, H-5’, 2 x H-6, CG2CXs), 4.62 (dd, J3:4’ = 6.7 Hz, J4’,5 = 4.7 Hz, 1 H, H- 

4’), 6.30 (d. 1 Hi H-3’). 9: [aID + 46.0 (c 3.4); 8~ = 3.44 (ddd, 54.5’ = Js.ca = 10.1 Hz, Js:ge = 5.4 Hz, 

1 H. H-5’). 3.55 [d. JY,.,s = 10.1 Hz, 1 H, H-3’), 3.76 (dd, J646’e = 10.5 Hz, 1 H, 6’a), 4.05 (dd, 1 H, 6’e), 

5.54 (dd, 1 H, H-4’). 10: [a]# - 4.6 (c 2); sH = 1.90 (dd, Jsatipe = Jsasp’ = 13.0 Hz, 1 H, H-3’a). 2.39 

(dd, Js.,q = 5.0 klz, 1 H, H-3’e), 3.95-4.05 (m, 2 H, H-6’a and H-6’e), 4.10 (m, 1 H, H-S), 5.15 (ddd, 

J c,ss = 13.0 Hz, 1 H, H-4’), 5.77 (d, J = 7.5 Hz, 1 H, NH). 11: [a]D** - 5.6 (c 2.5); 6~ = 1.91 (dd, J~4~~c 

= JYr4’ = 12.9 Hz, 1 H, H-3’a), 2.41 (dd, J3ne,4’ = 5.0 Hz, 1 H, H-3’e), 3.90-4.05 (m, 2 H, H-h’a and H- 

6’e), 4.12 (m, 1 H, H-5’), 5.16 (ddd, J#,s = 12.9 Hz, 1 H, H-4’) 5.66 (d, J = 7.9 Hz, 1 H, NH). 12: 

[aID*’ + 17.6 (c 3.3); 6t.j = 3.60-3.88 (m, 3 H, H-5’, 2 x H-6’), 3.73 (s, 3 H, CO&H& 4.65 (m, 1 H, H- 

4’), 6.26 (d, Jy.4 = 7.5 Hz. H-3’). 13: [aID* + 19.7 (c 2); 6H = 2.40 (dd, Jy%yu = 14.2 Hz, Jya,s = 5.5 

Hz, 1 H, H-3’a), 2.73 (dd, J3’b,4 = 7.4 Hz, 1 H, H-3’b), 4.22 (dd, Jsp6’* = 7.3 Hz, J6qa,6’b = 11.9 Hz, 1 H, 

H-6’a), 4.30 (dd, Js,6’b = 4.9 Hz, 1 H, H-6’b), 4.45 (ddd, Jc5’ = 3.9 Hz, 1 H, H-S), 5.21 (ddd, 1 H, H- 

4’); for this interpretation see also McNicholas; Batley and Redmond, J., Curbohydr. Res. 1986, 146, 

219-231. 


