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Abstract. e-Hydroxy (Z)-enol ethers 6 and 12 were readily prepared from D-glucono-1,5-lactone by ring opening, 2-
O-alkylation with triflate 3, and Z-specific B-elimination. Cyclization of 6 and 12 induced by PhSeBF 4 or by PhSeOTE
provided exclusively B-connected disaccharides, which were converted into neuraminic acid analogues 10 and 11 or 3-
deoxy-2-glycosyl-D-2-hexulofuranosylonate 13, respectively.

N-Acetylneuraminic acid (Neu5Ac, 1, Scheme 1) occupies the nonreducing ends of the oligosaccharide
chains in many glycoconjugates, which are constituents of the outer layer of plasma membranes; NeuSAc is of
considerable importance for a great number of biological functions.2 Analogues and their glycosides are re-
quired for understanding the interactions with the enzymes involved in its metabolism (especially sialylirans-
ferases and sialidases).3
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Scheme 2 D-Gluconolactone
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In this context we recently reported®® a highly stereoselective disaccharide synthesis of a-glycosidically linked
NeuSAc-analogues of type A, lacking the D-erythro-trihydroxypropyl-side chain; this method is based on a
cyclization of e-hydroxy (E)-enol ether intermediate E (route I)4b, initiated by N-iodosuccinimide.

In this paper we describe the cyclization of the alternative (Z)-enol ether D (route IT) which depending on
the substituent X at C-5 results in the formation of B-glycosidic NeuSAc-analogues B or in newly prepared B-
glycosides C of 3-deoxy-D-erythro-2-hexulosonic acid (KDG, 2); 2 is an important metabolite of bacterial po-
lysaccharide degradation,’

The starting material of type F (Scheme 2; 5, gluco-series) could be easily obtained from D-glucono-1.5-
lactone via regioselective di-O-isopropylidenation with simultaneous methyl ester formation (— 4)® and then
alkylation of the OH-group at C-2 with freshly prepared methyl 2,3,4-iri-O-benzyl-6-O-trifluoromethan-
sulfonyl-a-D-glucopyranoside 37. Acid catalyzed selective 5',6'-de-O-isopropylidenation, selective 6-O-silyla-
tion with t-butyldiphenylsilyl chloride (TBDPS-C1)8, and azido group introduction at the C-5' atom afforded the
intermediate desired for B-elimination. Thus, treatment of this base sensitive molecule with t-BuOK at -78°C
led to abstraction of the acidic proton at C-2' and concomitant 3'-O-elimination providing the (Z)-enol ether 6
in quantitative yield.

Epimerization of the OH-group at C-2 in 4 to the manno-derivative 7 (Scheme 2, manno-series) and
applying the same reagents and reaction conditions as described above resulted also in (Z)-enol ether 6, thus
evidencing the E1cB mechanism of this C-2'/C-3' 8-elimination.

Compound 6 possesses the desired (Z)-configuration? required for the ensuing highly regio- and B-stereo-
selective cyclization which could be induced at low temperature by the new reagent PhSeBF, or also by
PhSeOTf19 as highly electrophilic promotors in a quantitative reaction. The 2Cs conformation of the B-gly-
cosides, obtained via G as intermediate, was derived from the H-NMR data of 9 (J3 4 =J 4 5 = 10.1 Hz; trans-
diaxial relationships between H-3', H-4', H-5"). The introduction of the bulky pivaloyl group (route to 11} indi-
cated, that the stereochemical course of the reaction depends mainly on two factors: i) the conformation of the
two possible intermediates G and H after the addition of the PhSe*-species favoring the chair-like form G, and
ii) the cooperative anomeric effect in the nascent (Z)-enol ether product. Reduction of the azido and the phenyl-
selenyl groups with BusSnH in the presence of catalytic amounts of AIBN (toluene, 90 °C, 30 min) and ace-
tylation gave compounds 10 and 11, respectively. On the other hand, O-unprotected (Z)-enol ether 12 gave
after the same procedure the 3-deoxy-D-erythro-2-hexulofuranosylonate 13 in high yield. The observed
regiochemistry accords with the kinetically preferred formation of five-membered rings in carbohydrate ring
closure reactions. The compounds were characterized by their 'H-NMR datall.
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